DictionaryForumContacts

   Russian thesaurus
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Я   <<  >>
Terms for subject General (88730 entries)
Трансформатор Тесла электрическое устройство трансформаторного типа, служащее для возбуждения высоковольтных (до 106 В) колебаний высокой частоты (до 1,5·105 Гц) состоит из бессердечникового трансформатора, разрядника и электрического конденсатора. Изобретён в 1891 Н. Теслой. Используется в демонстрационных целях.
функциональный преобразователь электрическое, гидравлическое или пневматическое устройство, формирующее выходной сигнал, который связан с одним либо с несколькими входными сигналами заданной функциональной зависимостью. Применяется в АВМ, системах автоматического управления и регулирования, телемеханических системах и т. д.
электричество совокупность явлений, в которых обнаруживается существование, движение и взаимодействие (посредством электромагнитного поля) заряженных частиц. Учение об электричестве - один из основных разделов физики. Часто под электричеством понимают электрическую энергию, напр., когда говорят об использовании электричества в народном хозяйстве; значение термина "электричество" менялось в процессе развития физики и техники. О применении электричества в технике см.
электричество совокупность явлений, обусловленных существованием, движением и взаимодействием заряженных тел или частиц - носителей электрических зарядов. Связь электричества и магнетизма Взаимодействие неподвижных электрических зарядов осуществляется посредством электростатического поля. Движущиеся заряды (электрический ток) наряду с электрическим полем возбуждают и магнитное поле, то есть порождают электромагнитное поле, посредством которого осуществляются электромагнитные взаимодействия. Таким образом, электричество неразрывно связано с магнетизмом. Электромагнитные явления описываются классической электродинамикой, в основе которой лежат уравнения Максвелла. Происхождение терминов "электричество" и "магнетизм"Простейшие электрические и магнитные явления известны с глубокой древности. Близ города Магнесия в Малой Азии были найдены удивительные камни (по месту нахождения их назвали магнитными, или магнитами) которые притягивали железо. Кроме того, древние греки обнаружили, что кусочек янтаря (греч. elektron, электрон) потёртый о шерсть, мог поднять маленькие клочки папируса. Именно словам "магнит" и "электрон" обязаны своим происхождением термины "магнетизм", "электричество" и производные от них. Электромагнитные силы в природеКлассическая теория электричества охватывает огромную совокупность электромагнитных процессов. Среди четырёх типов взаимодействий - электромагнитных, гравитационных, сильных (ядерных) и слабых, существующих в природе, электромагнитные взаимодействия занимают первое место по широте и разнообразию проявлений. В повседневной жизни, за исключением притяжения к Земле и приливов в океане, человек встречается в основном только с проявлениями электромагнитных сил. В частности, упругая сила пара имеет электромагнитную природу. Поэтому смена "века пара" "веком электричества" означала лишь смену эпохи, когда не умели управлять электромагнитными силами, на эпоху, когда научились распоряжаться этими силами по своему усмотрению. Трудно даже перечислить все проявления электрических (точнее, электромагнитных) сил. Они определяют устойчивость атомов, объединяют атомы в молекулы, обусловливают взаимодействие между атомами и молекулами, приводящее к образованию конденсированных (жидких и твёрдых) тел. Все виды сил упругости и трения также имеют электромагнитную природу. Велика роль электрических сил в ядре атома. В ядерном реакторе и при взрыве атомной бомбы именно эти силы разгоняют осколки ядер и приводят к выделению огромной энергии. Наконец, взаимодействие между телами осуществляется посредством электромагнитных волн - света, радиоволн, теплового излучения и др. Основные особенности электромагнитных силЭлектромагнитные силы не универсальны. Они действуют лишь между электрически заряженными частицами. Тем не менее они определяют структуру материи и физические процессы в широком пространственном интервале масштабов - от 10-13 до 107 см (на меньших расстояниях определяющими становятся ядерные взаимодействия, а на больших - нужно учитывать и гравитационные силы) Главная причина в том, что вещество построено из электрически заряженных частиц - отрицательных - электронов и положительных атомных ядер. Именно существование зарядов двух знаков - положительных и отрицательных - обеспечивает действие как сил притяжения между разноимёнными зарядами, так и сил отталкивания между одноимёнными, и эти силы очень велики по сравнению с гравитационными. С увеличением расстояния между заряженными частицами электромагнитные силы медленно (обратно пропорционально квадрату расстояния) убывают, подобно гравитационным силам. Но заряженные частицы образуют нейтральные системы - атомы и молекулы, силы взаимодействия между которыми проявляются лишь на очень малых расстояниях. Существенен также сложный характер электромагнитных взаимодействий: они зависят не только от расстояний между заряженными частицами, но и от их скоростей и даже ускорений. Применение электричества в техникеШирокое практическое использование электрических явлений началось лишь во второй половине 19 в., после создания Дж. К. Максвеллом классической электродинамики. Изобретение радио А. С. Поповым и Г. Маркони - одно из важнейших применений принципов новой теории. Впервые в истории человечества научные исследования предшествовали техническим применениям. Если паровая машина была построена задолго до создания теории теплоты (термодинамики) то сконструировать электродвигатель или осуществить радиосвязь оказалось возможным только после открытия и изучения законов электродинамики. Широкое применение электричества связано с тем, что электрическую энергию легко передавать по проводам на большие расстояния и, главное, преобразовывать с помощью сравнительно несложных устройств в другие виды энергии: механическую, тепловую, энергию излучения и т. д. Законы электродинамики лежат в основе всей электротехники и радиотехники, включая телевидение, видеозапись и почти все средства связи. Теория электричества составляет фундамент таких актуальных направлений современной науки, как физика плазмы и проблема управляемых термоядерных реакций, лазерная оптика, магнитная гидродинамика, астрофизика, конструирование вычислительных машин, ускорителей элементарных частиц и др. Бесчисленные практические применения электромагнитных явлений преобразовали жизнь людей на земном шаре. Человечество создало вокруг себя "электрическую среду" - с повсеместной электрической лампочкой и штепсельной розеткой почти на каждой стене. Границы применимости классической электродинамикиС прогрессом науки значение классического учения об электричестве не уменьшилось. Были определены лишь границы применения классической электродинамики. Эти границы устанавливаются квантовой теорией. Классическая электродинамика успешно описывает поведение электромагнитного поля при достаточно медленных колебаниях этого поля. Чем больше частота колебаний, тем отчётливее обнаруживаются квантовые (корпускулярные) свойства электромагнитного поля. Литература:Максвелл Дж. К. Избранные сочинения по теории электромагнитного поля: Пер. с англ. М., 1952. Кудрявцев П. С. История физики. М., 1956. Льоцци М. История физики: Пер. с итал. М., 1970. Тамм И. Е. Основы теории электричества. 10 изд. М., 1989.Г. Я. Мякишев
электро - и радиоэлементы подразделяются на активные, к которым относятся различные электронные приборы (вакуумные, газоразрядные, полупроводниковые) и пассивные - резисторы, конденсаторы, катушки индуктивности, переключатели и т. д.
электро- часть сложных слов, указывающая на отношение к электричеству.
электроакустика занимается теорией, методами расчёта и разработкой электроакустических преобразователей.
электроакустические преобразователи преобразуют электрическую энергию в акустическую (энергию упругих колебаний) и обратно. Используются для приёма и излучения звука. Наиболее распространены электродинамические (громкоговорители, микрофоны) пьезоэлектрические и магнитострикционные электроакустические преобразователи.
электроакустический преобразователь ПЭА kondor­sky
электробалластёр путевая машина для укладки балласта при ремонте и строительстве железнодорожных путей. Рабочие органы электробалластёра приводятся в действие электродвигателями, а подъем рельсо-шпальной решетки осуществляется электромагнитами.
электробур забойная машина для бурения глубоких скважин, работающая от электродвигателя, на валу которого закреплено буровое долото.
фотоэлектронные приборы электровакуумные или полупроводниковые приборы, преобразующие энергию электромагнитного излучения оптического диапазона в электрическую (фотоэлементы, фотоэлектронные умножители, передающие электронно-лучевые приборы и др.) или преобразующие изображения в невидимых (инфракрасных, ультрафиолетовых, рентгеновских) лучах в видимые изображения (напр., электронно-оптические преобразователи)
электровакуумные приборы служат для различного рода преобразований электромагнитной энергии (генерации, усиления и т. д.) К ЭВП относятся: вакуумные электронные приборы (электронные лампы, магнетроны, клистроны, электронно-лучевые приборы, рентгеновские трубки и т. д.) газоразрядные электронные приборы (ионные приборы)
гиротрон электровакуумный СВЧ прибор, работа которого основана на взаимодействии электромагнитных волн в резонаторе или в волноводе с потоком электронов, вращающихся с циклотронной частотой в постоянном магнитном поле. Используется в качестве источника мощного электромагнитного излучения (напр., в установках для нагрева плазмы) в основном в диапазоне миллиметровых и субмиллиметровых волн.
кенотрон электровакуумный диод, предназначенный для выпрямления переменного тока главным образом промышленной частоты. Сохранил значение в основном в мощных выпрямительных установках.
бареттер электровакуумный прибор в виде заполненного водородом стеклянного баллона, внутри которого находится тонкая проволока. Ток бареттера в определенном диапазоне значений напряжений практически постоянен. Используют для стабилизации тока.
цифровая индикаторная лампа электровакуумный прибор для отображения информации в виде светящихся изображений цифр и др. знаков. Используется в вычислительных устройствах, цифровых измерительных приборах и др. Наиболее распространены газоразрядные цифровые индикаторные лампы в виде ионного прибора тлеющего разряда с несколькими катодами (каждый в форме одного из изображаемых знаков) и анодом.
рентгеновская трубка электровакуумный прибор для получения рентгеновских лучей. Простейшая рентгеновская трубка состоит из стеклянного баллона с впаянными электродами - катодом и анодом (антикатодом) Электроны, испускаемые катодом, ускоряются сильным электрическим полем в пространстве между электродами и бомбардируют анод. При ударе электронов об анод их кинетическая энергия частично преобразуется в энергию рентгеновского излучения.
платинотрон электровакуумный прибор магнетронного типа (прибор обратной волны) для широкополосного усиления и генерирования электромагнитных колебаний сверхвысоких частот. Применяют в передающих устройствах радиолокационных станций, систем связи и др.
амплитрон электровакуумный прибор магнетронного типа для широкополосного усиления сверхвысокочастотных колебаний.